NumPy sqrt() in Python – Leitfaden

Das Python NumPy Modul wird verwendet, um mit mehrdimensionalen Arrays und Matrixmanipulationen zu arbeiten. Wir können die NumPy sqrt() Funktion nutzen, um die Quadratwurzel der Matrixelemente zu berechnen.

Python NumPy sqrt() Beispiel

import numpy

array_2d = numpy.array([[1, 4], [9, 16]], dtype=numpy.float)

print(array_2d)

array_2d_sqrt = numpy.sqrt(array_2d)

print(array_2d_sqrt)

Output:

[[ 1.  4.]
 [ 9. 16.]]
[[1. 2.]
 [3. 4.]]

Lassen Sie uns ein weiteres Beispiel betrachten, bei dem die Matrixelemente keine Quadrate von Ganzzahlen sind. Dieses Mal werden wir den Python-Interpreter verwenden.

>>> import numpy
>>> 
>>> array = numpy.array([[1, 3], [5, 7]], dtype=numpy.float)
>>> 
>>> print(array)
[[1. 3.]
 [5. 7.]]
>>> 
>>> array_sqrt = numpy.sqrt(array)
>>> 
>>> print(array_sqrt)
[[1.         1.73205081]
 [2.23606798 2.64575131]]
>>> 

NumPy sqrt() Unendlichkeitsbeispiel

Lassen Sie uns sehen, was passiert, wenn wir Unendlichkeit als Matrixelement haben.

>>> array = numpy.array([1, numpy.inf])
>>> 
>>> numpy.sqrt(array)
array([ 1., inf])
>>> 

Komplexe Zahlen

>>> array = numpy.array([1 + 2j, -3 + 4j], dtype=numpy.complex)
>>> 
>>> numpy.sqrt(array)
array([1.27201965+0.78615138j, 1.        +2.j        ])
>>> 

Negative Zahlen

>>> array = numpy.array([4, -4])
>>> 
>>> numpy.sqrt(array)
__main__:1: RuntimeWarning: invalid value encountered in sqrt
array([ 2., nan])
>>> 

Die Quadratwurzel einer Matrix mit negativen Zahlen wird eine RuntimeWarning auslösen, und die Quadratwurzel des Elements wird als nan zurückgegeben.

Kostenlosen Account erstellen

Registrieren Sie sich jetzt und erhalten Sie Zugang zu unseren Cloud Produkten.

Das könnte Sie auch interessieren:

centron Managed Cloud Hosting in Deutschland

Zeilen und Spalten in R

Python, Tutorial
Zeilen und Spalten in der R-Programmierung In diesem Artikel konzentrieren wir uns auf das Konzept der Zeilen und Spalten in R, d. h. darauf, wie man die Anzahl der Zeilen…